2009年8月31日星期一

坎德尔《新闻周刊》-A Biology of Mental Disorder

原文链接:《News Week》新闻周刊

理解心理疾病的生物学会让我们对心灵的认识产生飞跃。它不仅能告诉我们一些破坏性疾病。也因为这些是我们思考和感觉的疾病,所以它还能告诉我们我们是谁以及我们心灵是怎样运作的。1983年当James Gusella和Nancy Wexler追踪导致亨廷顿病的基因时,我天真地以为我们已快获得这些知识了。那时我希望10年内就能找到导致精神分裂、抑郁症、自闭症的基因。从那以后科学家们为找到这些做了很多努力,走了很多弯路,只是进展甚微。

在过去的几年中,遗传学的某些进展给了我们重燃希望的理由。既然现在我们能研究人类整个的基因组,那么我们就不用孤立地研究一个或几个基因。因此未来10到20年会比过去20年得到更多有意义的研究成果。

一项重要发现是基因组比预计的更加变化多端,这被叫做拷贝数变异(copy number variation, 下称CNV)。它是指染色体通过复制或删除自己的一部分来加强或者抑制某些基因的功能,这一部分通常包括几个或者数万个基因。CNV的著名例子是额外复制第21个染色体会导致唐氏综合症。最近发现这种变异在人群中非常常见。

称为新生突变(de novo mutations)的CNV可能和自闭症有关系。这种突变只会在身体的一个地方出现-精子或者卵子,并且在人类长大后生育下一代时突然现身,只在下一代身上出现症状。这符合自闭症的模式。这种遗传疾病在家族中有时出现:一个孩子得了自闭症,但是妈妈没有,爸爸没有,其他兄弟姐妹都没有。父亲或者母亲可能把这种变异传递给他们孩子中的某一个,即使变异之发生在他们的精子或者卵子中,而不是其他细胞的染色体上。孩子获得了这种变异并且会把它再传给自己的后代。新生突变可以解释最近几年自闭症的真实发生率。(自闭症病例数的增加部分也是因为更好的诊断水平(译者加:计算真实发生率时要去除这些病例)。)现在发现这类变异通常发生在30岁-40岁年龄段的末期以及40岁以上有小孩的人-这部分人近几年其人口有一定的增长。CNV和罕见的新生突变可能也是精神分裂的风险因素。

科学家在发现抑郁、焦虑和强迫性神经症的生物标记物方面也在取得进展。标记物在理解精神紊乱的生理基础、客观诊断、治疗效果等方面是关键,对预防高风险的精神病也是如此。

过去十年精神病学最让人信服的进步和基因组学没有一点联系。这种进步是用来严格、科学地检验某种心理疗法的有效性。这不会让人感到惊讶。现代学习与记忆的生物学主要发现之一就是教育、经验、社会交流会影响大脑。当你学过一样东西并记忆它一段时间,这是因为基因在特定的脑细胞里开关,导致神经细胞间形成新的突触。至于心理疗法之所以有效并能产生持久的、通过学习变化的疗效,是因为它能在大脑里产生稳定的生理变化。我
们现在用脑成像技术开始测量这种变化。如果一个患了强迫性神经症或者抑郁症的人接受了心理治疗,而且治疗是成功的话,治疗就会导致这些疾病的生物标志物逆转。

总之,这些进步会开启治疗抑郁症、双向人格障碍和精神分裂症的新方法。药理学这些病症的研究已经停滞了数十年。在这条路上我们也能发现我们自己是谁。

Kandel,哥伦比亚大学生物化学和生物物理学教授,因他对记忆的分子机制研究于2000年获得诺贝尔奖。他是《追寻记忆的痕迹》的作者。

-------

帖子作者翻译的:)

2009年8月18日星期二

[麻省理工] 【视频】神经经济学 (Neuroeconomics)

# _: `. O& _9 s' e* |



Title: Neuroeconomics
* R% V5 Z8 U/ s- X. W% H1 ESpeaker: Drazen Prelec
! L$ T. x. d' {. {1 d2 S, L
3 V8 C3 V9 ], G" v1 \2 LJune 7, 2008 4 s( \* Q$ d/ v `; h, h9 H
Running Time: 0:54:31

2009年8月16日星期日

NeuroFocus 通过收购 Neuroco 进驻英国及欧洲市场

世界领先的神经测试公司收购在迅速发展的脑波市场研究领域处于领先地位的英国公司

  加州伯克利2009年3月12日电 /美通社亚洲/ -- 迅速发展的神经营销学领域的世界领导者 NeuroFocus 宣布,该公司已经签署了一份收购 Neuroco 的协议。这一举动表明了该公司全球扩张的下一步计划,在此之前,NeuroFocus 已经在美国得到了迅速发展,并通过在日本和韩国等几个重要亚洲国家获得新的大客户拓展了自己在亚洲的业务。


  NeuroFocus 和 Neuroco 均为未上市公司。此次收购的条款尚未公布。Neuroco 今后将作为NeuroFocus Europe 运营。



  总部位于加州伯克利的 NeuroFocus 被评为向全球客户提供基于脑波的营销研究的最大供应商,这些客户包括多个行业的《财富》(Fortune) 百强企业。尼尔森公司 (The Nielsen Company) 是 NeuroFocus 的一个战略投资方。



  总部位于英国萨里的 Neuroco 将成为 NeuroFocus 在英国的运营基地,并将继续在英国和全欧洲扩大基于脑电图的市场研究的应用范围。Neuroco 的客户包括天空广播公司 (Sky Broadcasting) 和二十世纪福克斯 (20th century fox) 以及涉足汽车、包装消费品、饮料、休闲和零售行业的其它公司。



  NeuroFocus 和 Neuroco 合作进行的基于脑电图的神经测试通过测量脑波来获得消费者的注意力、情感投入以及记忆留存水平。从这些数据中还可得出说服消费者、提升知名度以及创新的指标。由于许多大公司发现了可靠的神经测试所带来的独特战略优势,因此神经营销行业近年来得到了迅猛发展。



  NeuroFocus 创始人兼首席执行官 A. K. Pradeep 博士表示:“此次合并标志着我们国际化发展的下一步计划,也表明全球商界已经认识到真正基于脑电图的神经测试是唯一值得信赖且具有科学依据的市场研究,它所提供的结果不仅可供行动参考,具有成本效益,而且拥有独一无二的精确度和相关性。我们曾放眼全球,寻找一个与我们一样以客户为中心,而且拥有与 NeuroFocus 同样严谨的科学态度、同样基于脑电图的脑波测试技术以及同样深厚的营销经验的公司。我们在 Neuroco 发现了这一切。”



  神经学测试源自致力于大脑疾病和脑部环境研究的神经系统科学实验室的近期研究成果,它为企业提供了最精确、可靠而且能够指导行动的知识,即了解消费者大脑深层潜意识对刺激作出的真正反应是什么。



  对消费者的这种了解至关重要,因为,神经科学研究表明,最初购买兴趣、购买意向和品牌忠诚度都是在潜意识层面上形成的。全脑脑电图测试和分析是最准确的神经学测试形式,因为脑电图传感器能够以每秒2000次的速度,从多达128个不同的脑部分区获取脑电波信号。



  NeuroFocus 和 Neuroco 还利用眼动追踪和皮电反应测量相结合的方法,在消费者对产品设计和包装、品牌和营销产生何种反映以及零售品牌如何被认识等方面获得最全面的了解。



  NeuroFocus 已凭借其专有技术和方法获得众多专利。在所有神经营销学公司中,该公司拥有最大的规范化数据库,其中包括数面向千种广告类别和产品的模板。



  Neuroco 负责人 Thom Noble 担任 NeuroFocus Europe 董事总经理,他将带领 NeuroFocus 将业务拓展至英国和欧洲其他市场。Neuroco 科学部主管 Darren Bridges 将担任 NeuroFocus Europe 实验室业务部主管,负责协调 NeuroFocus 英国及欧洲实验室的科研活动。



  Thom Noble 在评论此次收购时表示:“能够成为 NeuroFocus Europe 并为英国和欧洲客户带来世界神经营销学黄金标准令我们感到非常高兴,也很自豪。现在我们的重点是将我们对英国和欧洲市场独特需求的了解与 NeuroFocus 的知识、技术、专业技术人员和营销经验相融合,为我们的客户提供无与伦比的产品和服务,使他们能够凭借神经营销学在当前困难的经济环境中获得急需的经济收益。”



  Neuroco 董事长 Peter Laybourne 将与 NeuroFocus Europe 合作,并继续担任 Fathom International Ltd. 领导职位,Fathom International Ltd. 是世界领先的品牌策划和研究公司之一。



  英国地区神经营销学最早的开拓者、Neuroco 研发部主管 David Lewis 也将与 NeuroFocus Europe 合作。



  NeuroFocus 和 Neuroco 都成立于2005年。



  NeuroFocus 简介



  NeuroFocus Inc. 是将神经系统科学知识和专长引入广告、营销、产品开发与包装以及娱乐领域的领导者。该公司将源自伯克利、麻省理工学院 (MIT)、哈佛大学 (Harvard) 以及希伯来大学 (Hebrew University) 在神经系统科学和营销方面的博士级学术专长与顶级业务管理和咨询经验相结合。



  NeuroFocus 客户包括汽车、包装消费品、食品和饮料、金融服务、互联网、零售以及其它许多行业的《财富》(Fortune) 100强企业。娱乐业客户包括广播和有线电视以及电影业的大型公司。尼尔森公司 (The Nielsen Company) 是 NeuroFocus 的战略投资方。



  Neuroco 简介



  通过与领先的跨国公司客户合作,总部设在伦敦的 Neuroco 被公认为全球第一家利用脑电图技术的神经营销学机构。Neuroco 团队率先在广告、新产品开发构思和设计工作、包装开发、感官测试和购物者研究等众多研究领域采用了神经学和生物测试方法。



  他们的业务涵盖产品设计研发、营销传播、客户/交易营销代理,其经验涉及快速消费品 (FMCG)、广播和娱乐,媒体和汽车业。

---------

附:neurofocus公司的网址

http://www.neurofocus.com/

2009年8月7日星期五

Human v2.0和盲人用导航帽

就像web2.0如火如荼一样,human2.0也是如此。人工耳蜗在上个世纪得到成功后,现代利用电子技术开发出来的机械假肢、机械手、机械眼球甚至大脑等成果使得一些科学家声称,human2.0到来了。

什么是human2.0呢?网上查了下没有明确的定义,但BBC有个报道说是2029年人工智能可以代替人类了。结合上面的技术,我觉得可能是这样的:人类由于装上了很多原本属于机器的部件(例如机械手臂、机械脚),人类已经不完全是单纯的生物体。而机器装上了很多原本属于人类的生物器官(为什么机器人就不能用人类的眼球来看东西呢),他们也不再是单纯的机械体。这也就意味着:人类和机器人的界限变得模糊不清

给人类安装机械部件最重要的学科是生物医学工程,和神经科学心理学相关的话,脑机接口、植入性神经芯片都属于这些技术。对于机器安装生物部件最重要的学科是合成生物学。细节不清楚,不过前提是这些器官能在体外合成吧,合成生物学就能做到这一点。

之后会不会出现animal2.0、plant2.0呢,因为MIT techonology review09年将昆虫机器人列为重要的技术进展哦:)拭目以待。

参考来源:livescience

附:关注google的我了解到google似乎对technology singularity非常热衷,这个概念所指的含义和Human v2.0差不多ms。
------------------

盲人导航帽不算什么特别的新玩意儿。就是给盲人安装一个帽子,可以将各种视觉上的障碍转换成声音的导航地图放给盲人听。有导航犬的话这是不是多此一举呢?时间会告诉我们一切吧。

此仪器由英国Bristol大学开发而成,尚处于实验室测试阶段。

2009年8月1日星期六

NIH Launches the Human Connectome Project to Unravel the Brain’s Connections

这个是Zack Lynch主导的组织National Neurotechnology Initiative去美国国会争取来的结果。即便是在经济危机的今天,仍然让NIH拿出3千万美金去做人类脑连接性的脑影像图谱(果然美国人很会烧钱),而且这个project名称也非常“宏大”(宏大的东西往往做的事情不见得宏大。。。):Human connectome project(HCP)。

-----

Zack Lynch的原文

picture1_hagmann.jpgThe National Institutes of Health Blueprint for Neuroscience Research, a program targeted for additional federal support in the National Neurotechnology Initiative, is launching a $30 million project that will use cutting-edge brain imaging technologies to map the circuitry of the healthy adult human brain. By systematically collecting brain imaging data from hundreds of subjects, the Human Connectome Project (HCP) will yield insight into how brain connections underlie brain function. This project will be viewed in time as sparking the development of many important innovations that will help accelerate the the Neuro Revolution.

Three imaging techniques that will be used to carry out the HCP may include: (1)High angular resolution diffusion imaging with magnetic resonance (HARDI), which detects the diffusion of water along fibrous tissue, and can be used to visualize axon bundles. (2) Resting state fMRI (R-fMRI), which detects fluctuations in brain activity while a person is at rest, and can be used to look for coordinated networks within the brain. (3) Electrophysiology and magnetoencephalography (MEG) combined with fMRI (E/M fMRI), which adds information about the brain's electrical activity to the fMRI signal. In this procedure, the person performs a task so that the brain regions associated with that task become active. Since this is the first time that researchers will combine these brain imaging technologies to systematically map the brain's connections, the HCP will support development of new data models, informatics and analytic tools to help researchers make the most of the data.

--------

NIH的原文

The National Institutes of Health Blueprint for Neuroscience Research is launching a $30 million project that will use cutting-edge brain imaging technologies to map the circuitry of the healthy adult human brain. By systematically collecting brain imaging data from hundreds of subjects, the Human Connectome Project (HCP) will yield insight into how brain connections underlie brain function, and will open up new lines of inquiry for human neuroscience.

Investigators have been invited to submit detailed proposals to carry out the HCP, which will be funded at up to $6 million per year for five years. The HCP is the first of three Blueprint Grand Challenges, projects that address major questions and issues in neuroscience research.

The Blueprint Grand Challenges are intended to promote major leaps in the understanding of brain function, and in approaches for treating brain disorders. The three Blueprint Grand Challenges to be launched in 2009 and 2010 address:

  • The connectivity of the adult, human brain
  • Targeted drug development for neurological diseases
  • The neural basis of chronic pain disorders

"The HCP is truly a grand and critical challenge: to map the wiring diagram of the entire, living human brain. Mapping the circuits and linking these circuits to the full spectrum of brain function in health and disease is an old challenge but one that can finally be addressed rigorously by combining powerful, emerging technologies," says Thomas Insel, M.D., director of the National Institute of Mental Health (NIMH), which is part of the NIH Blueprint.

Scientists have studied the relationship between the structure and function of the human brain since the 1800s. Some parts of the brain serve basic functions such as movement, sensation, emotion, learning and memory. Others are more important for uniquely human functions such as abstract thinking. The connections between brain regions are important for shaping and coordinating these functions, but scientists know little about how different parts of the human brain connect.

"Neuroscientists have only a piecemeal understanding of brain connectivity. If we knew more about the connections within the brain – and especially their susceptibility to change – we would know more about brain dysfunction in aging, mental health disorders, addiction and neurological disease," says Story Landis, Ph.D., director of the National Institute of Neurological Disorders and Stroke (NINDS), also part of the NIH Blueprint.

For example, there is evidence that the growth of abnormal brain connections during early life contributes to autism and schizophrenia. Changes in connectivity also appear to occur when neurons degenerate, either as a consequence of normal aging or of diseases such as Alzheimer's.

In addition to brain imaging, the HCP will involve collection of DNA samples, demographic information and behavioral data from the subjects. Together, these data could hint at how brain connectivity is influenced by genetics and the environment, and in turn, how individual differences in brain connectivity relate to individual differences in behavior. Primarily, however, the data will serve as a baseline for future studies. These data will be freely available to the research community.

The complexity of the brain and a lack of adequate imaging technology have hampered past research on human brain connectivity. The brain is estimated to contain more than 100 billion neurons that form trillions of connections with each other. Neurons can connect across distant regions of the brain by extending long, slender projections called axons – but the trajectories that axons take within the human brain are almost entirely uncharted.

In the HCP, researchers will optimize and combine state-of-the-art brain imaging technologies to probe axonal pathways and other brain connections. In recent years, sophisticated versions of magnetic resonance imaging (MRI) have emerged that are capable of looking beyond the brain's gross anatomy to find functional connections. Functional MRI (fMRI), for example, uses changes in blood flow and oxygen consumption within the brain as markers for neuronal activity, and can highlight the brain circuits that become active during different behaviors. Three imaging techniques are suggested, but are not required, for carrying out the HCP:

  • High angular resolution diffusion imaging with magnetic resonance (HARDI), which detects the diffusion of water along fibrous tissue, and can be used to visualize axon bundles.
  • Resting state fMRI (R-fMRI), which detects fluctuations in brain activity while a person is at rest, and can be used to look for coordinated networks within the brain.
  • Electrophysiology and magnetoencephalography (MEG) combined with fMRI (E/M fMRI), which adds information about the brain's electrical activity to the fMRI signal. In this procedure, the person performs a task so that the brain regions associated with that task become active.

Since this is the first time that researchers will combine these brain imaging technologies to systematically map the brain's connections, the HCP will support development of new data models, informatics and analytic tools to help researchers make the most of the data. Funds will be provided for building an on-line platform to disseminate HCP data and tools, and for engaging and educating the research community about how to use these data and tools.

"Human connectomics has been gaining momentum in the research community for a few years," says Michael Huerta, Ph.D., associate director of NIMH and the lead NIH contact for the HCP. "The data, the imaging tools and the analytical tools produced through the HCP will play a major role in launching connectomics as a field."

The field of neuroscience emerged in the late 19th century, when scientists observed individual brain cells for the first time. Since then, researchers have made breathtaking progress in understanding the anatomy, cell biology, physiology and chemistry of the brain in both health and disease. Yet many fundamental questions remain unanswered, including how brain function translates into mental function and why brain function declines with age. Advances in neuroimaging, genomics, computational neuroscience and engineering have put us on the brink of another great era in neuroscience, when we can expect to make unprecedented discoveries regarding normal brain activity, disorders of the brain and our very sense of self.


The mission of the NIMH is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure. For more information, visit the NIMH website.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. Visit the NIH website for more information about NIH and its programs.

The NIH Blueprint for Neuroscience Research is a cooperative effort among the NIH Office of the Director and the 15 NIH Institutes and Centers that support research on the nervous system. By pooling resources and expertise, the Blueprint supports transformative neuroscience research, and the development of new tools, training opportunities, and other resources to assist neuroscientists.

分享到其他网站:)

Bookmark and Share

Recommended Reading