Nature:神经细胞活动与血液动力学关联遭到质疑
专题:Nature报道
神经活动能够增加大脑皮层的血流,但是一项新的研究发现,这些血流在神经细胞持续工作时会发生变化。
(图片提供:Yevgeniy Sirotin,Aniruddha Das)
在研究每件事物——从人们如何面对亲人的离去到我们为什么如此渴望某些食物——的神经学机制时,科学家越来越多地倾向于使用功能性磁共振成像技术 (fMRI)。在大多数情况下,这项技术能测量大脑中的血氧水平,并通常假设大脑中血氧水平越高的区域,其神经细胞的活动也就越频繁。然而,事实果真如此 吗?一项新的研究对这种假设提出了质疑,进而在这一萌芽中的研究领域激起了一抹意想不到的波澜。
这一惊人发现始于一项有关两只猴子的试验。美国哥伦比亚大学的神经科学家Yevgeniy Sirotin和Aniruddha Das训练每只猴子观察来自另一间暗室的微光。当这些光线以有规律且可预见的时间间隔变红后,每只猴子只需凝视几秒钟的光线便能得到一杯作为奖励的果汁。 研究人员在猴子的初级视觉皮层——视觉信息进入大脑皮层的第一座“驿站”——中植入了微电极。当两只猴子完成这项试验时,微电极仅仅获得了神经细胞活动的 一组稳定且无噪音的信号。(Das表示,微光只提供了很小的视觉刺激,就像夜空中的一颗星一样。)然而对血流和血氧水平进行的光学测量却得出了不同的结 论。研究人员在最近出版的英国《自然》杂志上报告了这一研究成果。
在整个试验过程中,这两项针对视觉皮层的血液动力学测试结果起起落落,并分别在猴子凝视光线的几秒钟之前达到了峰值。Das认为,这一发现表明,在 响应神经细胞活动的过程中,特定大脑区域的血氧水平并非只是简单地升高,而是会抢在一项预期任务之前作出响应——即便周围的神经细胞相对平静时依然如此。 这意味着神经细胞运行与血液动力学之间的关系并非像许多学者认为的那样简单。
Das表示,尽管这些发现“并不会对整个fMRI研究领域造成麻烦”,但会让fMRI的研究人员重新思考应该如何设计以及解释他们的试验。Das认 为可能需要改变大多数试验的设计,从而扣除他和Sirotin所发现的提前发生的血液动力学变化,并使研究人员能更紧密地追踪神经细胞活动产生的变化。
美国加利福尼亚大学伯克利分校的神经科学家Ralph Freeman认为,这是一个“非常令人吃惊的”研究成果。Freeman说:“直觉告诉我,它将开启一片相关研究的新领域。”(生物谷Bioon.com)
生物谷推荐原始出处:
Nature,457, 475-479,Yevgeniy B. Sirotin,Aniruddha Das
Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity
Yevgeniy B. Sirotin1 & Aniruddha Das1,2,3,4,5,6
1 Department of Neuroscience,
2 Department of Psychiatry,
3 W. M. Keck Center on Brain Plasticity and Cognition,
4 Mahoney Center for Brain and Behavior,
5 Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA
6 New York State Psychiatric Institute, 1051 Riverside Drive, Unit 87, New York, New York 10032, USA
Haemodynamic signals underlying functional brain imaging (for example, functional magnetic resonance imaging (fMRI)) are assumed to reflect metabolic demand generated by local neuronal activity, with equal increases in haemodynamic signal implying equal increases in the underlying neuronal activity1, 2, 3, 4, 5, 6. Few studies have compared neuronal and haemodynamic signals in alert animals7, 8 to test for this assumed correspondence. Here we present evidence that brings this assumption into question. Using a dual-wavelength optical imaging technique9 that independently measures cerebral blood volume and oxygenation, continuously, in alert behaving monkeys, we find two distinct components to the haemodynamic signal in the alert animals' primary visual cortex (V1). One component is reliably predictable from neuronal responses generated by visual input. The other component—of almost comparable strength—is a hitherto unknown signal that entrains to task structure independently of visual input or of standard neural predictors of haemodynamics. This latter component shows predictive timing, with increases of cerebral blood volume in anticipation of trial onsets even in darkness. This trial-locked haemodynamic signal could be due to an accompanying V1 arterial pumping mechanism, closely matched in time, with peaks of arterial dilation entrained to predicted trial onsets. These findings (tested in two animals) challenge the current understanding of the link between brain haemodynamics and local neuronal activity. They also suggest the existence of a novel preparatory mechanism in the brain that brings additional arterial blood to cortex in anticipation of expected tasks.